NATIONAL CONFERENCE ON STORMWATER MANAGEMENT AND EROSION & SEDIMENT CONTROL (SWoM 2017) KUALA TERENGGANU, MALAYSIA 18 – 20 SEPTEMBER 2017

EMERGING ECOHYDROLOGY ON URBAN STORMWATER MANAGEMENT

DR. NORLIDA MOHD DOM Deputy Director HUMID TROPICS CENTRE KUALA LUMPUR

The Regional Humid Tropics Hydrology and Water Resources Centre for Southeast Asia and The Pacific (HTC KL)

(foto: A.Ghani, 2017)

PRESENTATION OUTLINE

NATIONAL CONFERENCE ON STORMWATER MANAGEMENT AND EROSION & SEDIMENT CONTROL (SWaM 2017) KUALA TERENGGANU, MALAYSIA 2 18 – 20 SEPTEMBER 2017

(foto: A.Ghani, 2017)

WATER AND ECOSYSTEMS

Regional scale Water Climate Quality Site scale ΒΙΟΤΑ **HYDROLOGY** Water Gemorphology Quantity

ECOHYDROLOGY interdisciplinary an studying the field interactions between water and ecosystem

THE INTERACTIONS BETWEEN WATER AND ECOSYSTEM

PEOPLE

8% recreation & tourism

FOOD

portable water, livestock,

74% agriculture, aquaculture

INDUSTRY 18% power generation, development

3

THE PRINCIPLES OF ECOHYDROLOGY IN STORM WATER MANAGEMENT

PROCESS

hydrological cycle of a basin, hydrological and biological process

INTEGRATED processes basin scale basin's carrying capacity ecosystem services.

REGULATION of hydrological and ecological integrative approach, FOR new tool for Integrated River Basin Management.

(foto: A.Ghani, 2017)

UN SUMMIT (25-27 SEPTEMBER 2015) TRANSFORMING OUR WORLD THE 2030 AGENDA FOR SUSTAINABLE DEVELOPMENT

TRANSFORMING THE WATER SECTOR

National IWRM Plan Strategies & Road Map"Goal 6" (ASM, 2017)

6.1 By 2030, achieve universal and equitable access to safe and affordable drinking water for all

6 2 30 a hive access to add and quitable salitation and hygiene for all and end open defection 6 6 6 By 2020, protect and restore waterrelated ecosystems, including mountains, 6 forests, wetlands, rivers, aquifers and lakes

water scarcity

6.5 By 2030, implement integrated water resources management at all levels, including through transboundary cooperation as appropriate

6.6 By 2020, protect and restore water-related ecosystems, including mountains, forests, wetlands, rivers, aquifers and lakes

6.a By 2030, expand international cooperation and capacity-building support to developing countries in water- and sanitation-related activities and programmes, including water harvesting, desalination, water efficiency, wastewater treatment, recycling and reuse technologies

6.b Support and strengthen the participation of local communities in improving water and sanitation management

SWM FOR IWRM

EcoHydrology STORM WATER MANAGEMENT

(foto: A.Ghani, 2017)

STORMWATER MANAGEMENT EVOLUTION 1910's TO 2011

rancis Fifth <u>C</u>o

- Lack of mandatory service standards and infrastructure planning

1960's

1970's

2010's - IHP VIII (2014-2021) Water Security: Responses to Local and Global Challenges. incorporating medium-term strategies 2000's

> ecular & biotechnological thods for enhancement of water purification Urban stormwater

- Total water Enhanced nutrient trapping on cycle a floodplain management - Sediments into bioenergy integrated water

resourceHydrobiomanipulation for reduction of toxic management algal blo 1980's

> - Sustainable Urban Drainage Systems

Iandscape Buffer strips (LW ecotones) Conservation (e.g. MaB biosphere reserve Restoration (e.g. lignite mine spoil heap) Ecoloaical enaineerina

(Hawkins Partners, Inc., 2017

Biodegradation of

emerging pollutants (dioxins, PCB's etc.)

> Shelter belts in agricultural

- Drainage and flood protection standards introduced, Rapid disposal, Conveyance Oriented

River Aire constructed in the 1930s (ResearchGee, 2017) - River Restoration / rehabilitation (- Soft engineering solutions 1980's

- Treating stormwater to improve water quality

STORMWATER SYSTEMS

9

Filtered pollutant Tc Delayed

Vegetated Systems

- Large-scaled system
 - Wetlands
 - Ponds
 - Small-scaled systems
 - Bioretention basins
 - Biofiltration swales

Non-vegetated systems

- Roofwater harvesting systems
 - Conventional
 - Siphonic
- Rainwater tanks
- Permeable pavements
- Managed aquifer recharge

Integrated systems

 Permeable pavement draining to biofiltration swale draining to wetland

POLLUTANT REDUCTION

Catalan organization				
	New	Land	Drainage	
	Development	Redevelopment	System	URBAN STORMWATER MANAGEMENT
		(see note)	Upgrading	(MANUAL SALIRAN MESRA ALAM MALAYSIA)
Dollutant	Annual Average	Reduction in	Reduction in	
Pollulani	Pollutant	Annual Average	Annual Average	
	Removal	Pollutant Load	Pollutant Load	And a state of the
	Efficiency (%)	from Existing	from Existing	
		Conditions (%)	Conditions (%)	
Floatables	90	90	30	VOLUME 4
Sediment	70	50	20	UESFUN FUNUAMENTALS
Suspended	60	40	20	
Solids				DEMATTHENT OF INVESTIGA AND RAINAGE MALETEA
Nitrogen	50	30	20	
Phosphorus	50	30	20	POST-DEVELOPMENT

Table 4.5 $\,$ Pollutant Retention or Load Reduction Targets , MSMA 1^{ST} EDITION

ঠ 🖉 🚿
Government of Malaysia Department of Irrigation and Drainage
Urban Stormwater Management Manual
for Malaysia
antick Second
- marter the
A CONTRACTOR OF A CONTRACTOR
MSMA 2nd Edition

(Table 3.12: Pollutant Reduction Targets -DID, 2011)

MSMA 2ND EDITION

Pollutant	Annual Reduction Targets (%)
Floatables/Litters	90
Total Suspended Solids (TSS)	80
Fotal Nitrogen (TN)	50
10 Fotal Phosphorus (TP)	50

Design ARI

Typical urban catchment in Malaysia, the recommended design ARI for quality control structure is 3 month ARI.

Devenuetev	Event Mean Concentration (EMC)							
Parameter	Residential	Commercial	Industrial	Highway				
TSS	128mg/l	122mg/l	166mg/l	80mg/l				
ТР	0.34mg/l 0.32mg/l		0.49mg/l	0.16mg/l				
TN	4.21mg/l	4.84mg/l	5.00mg/l	2.25mg/l				

MSMA 2nd Edition

MALAYSIA CASE STUDIES

SUNGAI LANGAT

IMPLEMENTATION

HUMD TROPICS CENTRE KL- MSMA SME

USM BIOECODES

IMPLEMENTATION

PUTRAJAYA WETLAND

STORMWATER ECOHYDROLOGY (SME) COMPONENTS AT HTC-KUALA LUMPUR

PELAN PUNLA

MSMA Components

MSMA SME Components: Bioretention

Bioretention at HTC Kuala Lumpur

- Bioretention basins are landscaped depressions or shallow basins used to slow and treat on-site stormwater runoff.
- Stormwater is directed to the basin and then percolates through the system where it is treated by a number of physical, chemical and biological processes.

Grid and points opted for hydraulic conductivity test at bioretention cell

BIORETENTION CONSTRUCTION

HYDRAULIC CONDUCTIVITY OF THE FILTER MEDIA AT BIORETENTION SYSTEM

Testing Point	Initial Rate of Infiltration (f ₀) (mm/hr)	Constant Rate of Infiltration (f _c) (mm/hr)	Shape Factor (k) (hr ⁻¹)	Horton Equation $f = f_c + (f_0 - f_c)e^{-kt}$
Before Installation of Bioretention	62.15	3	5.86	f = 3 + (62.15 - 3) ^{e-5.86t}
With Bioretention Point 1 Point 2 Point 3 Point 4 Point 5 Point 6	280.75 155.51 234.93 292.97 311.29 296.02	76.36 48.87 30.55 88.58 106.91 91.63	6.37 6.83 6.84 12.36 5.93 0.355	$\begin{array}{l} f = 76.36 + (280.75 - 76.36)^{\text{e-}6.37\text{t}} \\ f = 48.87 + (155.51 - 48.87)^{\text{e-}6.83\text{t}} \\ f = 30.55 + (234.93 - 30.55)^{\text{e-}6.84\text{t}} \\ f = 88.58 + (292.97 - 88.58)^{\text{e-}12.36\text{t}} \\ f = 106.91 + (311.29 - 106.91)^{\text{e-}5.93\text{t}} \\ f = 91.63 + (296.02 - 91.63)^{\text{e-}0.355\text{t}} \end{array}$

The constant infiltration rate was recorded at 3 mm/hr which is ten (10) thirty five (35) times lower than the constant infiltration rate taken during hydraulic conductivity test on the bioretention system.

RESULTS & ANALYSIS

Event	Event length	Total rainfall	Rainfall intensity (mm/hr)		Total inflow	Total outflow	Bioretention	
	(min)	(mm)	5-min	1-hr	24 - hr	(m ³)	(m ³)	(m ³)
8/7/2012	103	23.4	24.0	22.6	1.0	0.772	0.046	0.726
9/7/2012	251	15.0	7.2	5.4	0.6	0.495	0.004	0.491
16/7/2012	66	42.6	7.2	40.2	1.8	1.406	0.016	1.390
17/7/2012	121	10.0	19.2	8.6	0.4	0.330	0.091	0.239

91% REDUCTION/ STORAGE BACK TO GROUNDATER

SUNGAI LANGAT @ BANGI

SUNGAI LANGAT @ BANGI

MUSIC Pollutant Reduction Model Results (With & Without MSMA-SME Components)

ANNUAL % POLLUTANT REDUCTION RESULTS

Catchment	Sources	Residual Load	% Reduction	% Reduction
Receiving Node 1				
Flow (ML/yr)	86.6	79.8	7.9	0
TSS (kg/year)	10.9E3	1.22E3	88.8	0
TP (kg/year)	29.4	7.98	72.9	0
TN (kg/year)	364	160	56.0	0
Gross Pollutant	2.17E3	0	100.0	0
(kg/year)				
Receiving Node 2				
Flow (ML/yr)	19.7	19.2	2.6	0
TSS (kg/year)	2.48E3	813	67.2	0
TP (kg/year)	6.70	5.83	12.9	0
TN (kg/year)	82.9	54.3	34.6	0
Gross Pollutant	493	0	100	0
(kg/year)				
Final Outlet				
Flow (ML/yr)	154	134	13.0	0
TSS (kg/year)	19.4E3	5.33E3	72.5	0
TP (kg/year)	52.4	25.1	52.1	0
TN (kg/year)	649	300	53.8	0
Gross Pollutant	3.86E3	0	100	0
(kg/year)	19			

PUTRAJAYA WETLAND

PUTRAJAYA WETLAND

Wetland Cells - UN8, UN7, UN6, UN5 (2011-2012)

UPPER NORTH 7

UPPER NORTH 6

UPPER NORTH 6A WQ DECREASED (29 Des 2012)

UPPER NORTH 5

UPPER NORTH 5 WQ DECREASED (29 Dec 2012)

USM ENGINEERING CAMPUS THE BIOECODES

WHY WE DO ALL THESE ?....

IHP PHASE VIII

(2014 - 2021)

INCORPORATING MEDIUM-TERM STRATEGIES

Ecohydrology, Water-Addressing Water and Water Groundwater related Engineering Water Human Education, in a Changing **Disasters** and Harmony for Key for Water Scarcity and Settlements Environment **Hydrological** a Sustainable of the future Quality Security World Change Water Security: Response to Local, Regional, and Global Challenges

CONCLUSION

WATER FOR LIVELIHOOD AND WATER AS A RESOURCE

FUTURE CHALLENGE ECOHYDOLOGY ENFORCEMENT

The Regional Humid Tropics Hydrology and Water Resources Centre for Southeast Asia and The Pacific (HUMID TROPICS CENTRE KUALA LUMPUR) No. 2, Jalan Ledang off Jalan Duta,

No. 2, Jalan Ledang off Jalan Duta, 50480 Kuala Lumpur Tel 603 20958700 Fax 603 20953366 Email : 001104/md@vorter.cov.mv

norlidamd1@gmail.com